Convergence in distribution of nonmeasurable random elements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence in Distribution for Uncertain Random Variables

A random variable is a measurable function from an uncertainty space to the set of real numbers, which is used to model randomness. An uncertain variable is a measurable function from uncertainty space to the set of real numbers, which is used to describe uncertainty. However, randomness and uncertainty often simultaneously appear in a complex system. Uncertain random variable provides a useful...

متن کامل

Dependent Lattice Random Elements

In this study, we first introduce the Banach lattice random elements and some of their properties. Then, using the order defined in Banach lattice space, we introduce and characterize the order negatively dependence Banach lattice random elements by the order defined in Banach lattice space. Finally, we obtain some limit theorems for the sequence of order negatively dependence Banach lattice ra...

متن کامل

Complete Convergence for Sums of Arrays of Random Elements

Let {Xni} be an array of rowwise independent B-valued random elements and {an} constants such that 0 < an ↑ ∞. Under some moment conditions for the array, it is shown that ∑n i=1Xni/an converges to 0 completely if and only if ∑n i=1Xni/an converges to 0 in probability.

متن کامل

On the convergence of certain sums of independent random elements

Our notation is standard ([1], [3], [4], [9]). Throughout this note ∆ will denote the Cantor space {−1, 1}, Σ the σ-algebra of subsets of ∆ generated by the n-cylinders of ∆ for each n ∈ N, and ν the Borel probability ⊗i=1νi on Σ, where νi : 2 {−1,1} → [0, 1] is defined by νi(∅) = 0, νi({−1}) = νi({1}) = 1/2 and νi({−1, 1}) = 1 for each i ∈ N. In what follows X will be a real Banach space and L...

متن کامل

Complete Convergence for Weighted Sums of Arrays of Random Elements

Let {Xnk: k,n 1,2 be an array of row-wise independent random elements in a separable Banach space. Let {ank: k,n 1,2 be an array of Voo voo R+ real numbers such that /-k=l lank -< 1 and Ln=l exp(-a/A < for each c e where n V 2 Voo An kk=l ank. The complete convergence of l’k=l ank Xnk is obtained under varying moment and distribution conditions on the random elements. In particular, laws of lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2004

ISSN: 0091-1798

DOI: 10.1214/aop/1078415839